+Advanced Search

Experimental Research and Finite Element Analysis of the Interfacial Bonding Behavior of CFRP-Concrete Interface
Author:
Affiliation:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
    Abstract:

    The bonding behavior of CFRP-Concrete Interface is a key performance of concrete structure strengthened with CFRP plate, and it has a critical effect on the mechanical behavior and the failure mode of the strengthened structure. This paper adopted double-shear tests on 4 concrete components strengthened with CFRP plate to investigate the mechanical behavior and the failure mode of the specimens with different bond length and to analyze the influence of different bond lengths on the ultimate capacity and the distribution of the bonding stress. According to the test results, the distribution of the CFRP strain along the bond length shows an exponential decreasing law, and the stress near the loading position is much greater than the other end. The orthotropic spring elements were adopted to simulate the adhesive layer with ANSYS software, and the finite element model of the specimen was established. The local bond slip curve obtained from the test was used as the F-d curve of spring elements. The FEA results agree with the experimental ones, confirming the correctness of the FEM. Based on the bond slip curves obtained from the test, some bond-slip constitutive relationships were fitted according to several classic bond-slip constitutive relations. The test and FEA results show that the CFRP plate has begun peeling from the concrete surface when the tensile stress applied to CFRP reaches 24% of the tensile strength of the material. To ensure the full utilization of CFRP strength, the anchorage for CFRP plate should be adopted.

    Reference
    Related
    Cited by
Article Metrics
  • PDF:
  • HTML:
  • Abstract:
  • Cited by:
Get Citation
History
  • Received:
  • Revised:
  • Adopted:
  • Online: June 20,2014
  • Published: