+Advanced Search

Parameter Turning of Control System Based on Electronically Controlled Multi-valve of Hydraulic Excavator
Author:
Affiliation:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
    Abstract:

    Aimingat on the coupling between the multi-valve structure of the conventional hydraulic excavator and the machine performance,the no-matching problem of machine control generated by the low precision of hydraulic control system, a parameter turning method of control system based on electronically controlled multi-valve of hydraulic excavator was proposed to achieve simplified design of hydraulic excavator multi-valve and adaptive change of the machine control systems. The output of electrical control handles was defined as 0-1 digital signal. Considering the structural characteristics of the multi-valve,the first-order control system of variable parameters for electronically controlled multi-valve of the hydraulic excavator is designed. An evaluating algorithm of parameter tuning was put forward, combining the system shock,energy efficiency,and the following performance. By designing hardware-in-Loop simulation, which is formed of the electrical control handles, controller, performance digital platform of hydraulic excavator, it shows that the control systems are effective, and the parameter T and K of the first-order control system,which the controller responds to,can base on the machine performance to be tuned. It is also found that time constant T can be determined by the natural frequency of multi-valve spool and the valve opening,and has smaller correlation with the spool-valve damping ratio. The design method of the hydraulic excavator provides good application value for the machine multi-valve design,which is associated with the design of control and operation.

    Reference
    Related
    Cited by
Article Metrics
  • PDF:
  • HTML:
  • Abstract:
  • Cited by:
Get Citation
History
  • Received:
  • Revised:
  • Adopted:
  • Online: October 27,2016
  • Published: