+Advanced Search

Experimental Study on Seismic Behavior of Steel Tube Reinforced Concrete Bridge Columns with Lower Shear Span Ratio
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
    Abstract:

    Six bridge column specimens with shear span ratio of λ=1.5 were tested under combined constant axial load and lateral reverse loads. The effectiveness of built-in steel tube in enhancing the seismic behavior of RC stub bridge column was evaluated. Besides, the influence of axial load ratio, longitudinal rebar ratio, stirrup ratio, and steel tube ratio on the shear strength, deformation capacity, strength attenuation, and energy dissipation of STRC stub bridge columns was also discussed. Test results indicate that the failure patterns of RC and STRC stub bridge columns were shear diagonal-tension failure and ductile shear diagonal-compression failure, respectively. The existence of core steel tube alleviated the damage of RC stub bridge column and changed the brittle failure into a ductile fashion, which significantly enhanced the seismic behavior of STRC stub bridge column specimen over the RC counterpart. The shear strength, ductility and energy dissipation of STRC stub bridge column were improved with the increase of steel tube ratio or stirrup ratio. With the increase of the longitudinal rebar ratio or axial load ratio, the shear strength of STRC stub bridge column gained a noticeable increment, while the ductility and energy dissipation tended to deteriorate. Test results in this paper could provide reference for theoretical research and practical application of STRC stub bridge columns.

    Reference
    Related
    Cited by
Article Metrics
  • PDF:
  • HTML:
  • Abstract:
  • Cited by:
Get Citation
History
  • Online: February 26,2018