(College of Electrical and Information Engineering, Hunan University, Changsha410082, China) 在知网中查找 在百度中查找 在本站中查找
Affiliation:
Fund Project:
Article
|
Figures
|
Metrics
|
Reference
|
Related
|
Cited by
|
Materials
Abstract:
An improved Hidden Markov Models (HMM) was proposed to recognize the user's behavior. In order to improve the learning efficiency of Baum-Welch algorithm in HMM, and to solve the problem of initial sensitivity, the improved GA s used to optimize the initial parameters of HMM, in which the Chaos operator is utilized to avoid the problem of stagnation and premature convergence of the traditional GA in the convergence process. Finally, the experiment results based on ADLs data in UCI show the algorithm's availability and reliability for user's behavior recognition.