+Advanced Search

Numerical Simulation Study on Performance of a Cyclone Separator with Build-in Swirling Blades
Author:
Affiliation:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
    Abstract:

    This paper presented a new efficient cyclone separator, which can block the particles moving to the inner vortex. The new cyclone separator was obtained by setting a group of swirling blades with the same direction as the rotating direction of the air flow in the internal and external vortex interface of the traditional separator. The Reynolds model and discrete phase model were selected to simulate the gas-solid two-phase flow, and the discrete random walk model was used to study the turbulent dispersion of particles. The accuracy of the numerical simulation was verified by comparing with the experimental data. The performance between the traditional cyclone and new efficient cyclone was compared by numerical simulation. Moreover, the optimization of the swirling blades was performed. The results show that, compared with the traditional cyclone, adding the swirling blades effectively improves the separation efficiency, which can decrease the cut-off size by 60%~70% and increase the pressure drop by 19.3% only. Further, the effect of swirling blades on the separation efficiency of small particle size and low density particles was more significant.

    Reference
    Related
    Cited by
Article Metrics
  • PDF:
  • HTML:
  • Abstract:
  • Cited by:
Get Citation
History
  • Received:
  • Revised:
  • Adopted:
  • Online: May 17,2019
  • Published: