+Advanced Search

Multi-objective Optimization Method of Fuel Cell Hybrid Energy System
Author:
Affiliation:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
    Abstract:

    In order to solve the limitation of the hydrogen consumption as an economic evaluation index for the fuel cell hybrid bus, an equivalent hydrogen consumption model and a multi-objective optimization function combining quality and life factors were adopted, and the economical key parameters relevant to the whole life cycle were optimized in this paper. The total system cost and energy system mass were reduced by the optimization. The simulation results show that the super capacitor can still fully play the role of “shaving the peak and filling the valley”,the battery cannot output or input large current, the cycle equivalent hydrogen consumption and the average current of the battery remains basically unchanged before and after optimization, the output power of the fuel cell is stable, and the fuel cell voltage decay is only reduced by 2 μV. It should be noted that the degree of decay of the lifespan is little. The optimization method proposed can ensure the life and economic efficiency, the equivalent hydrogen consumption of the cycle conditions is basically the same, and the total cost and total mass of the system are optimized to a greater degree, accelerating the application of fuel cell hybrid energy system in bus.

    Reference
    Related
    Cited by
Article Metrics
  • PDF:
  • HTML:
  • Abstract:
  • Cited by:
Get Citation
History
  • Received:
  • Revised:
  • Adopted:
  • Online: October 25,2019
  • Published: