+Advanced Search

Study on Dynamic Response Characteristics of Multi-segment Filled Composite Honeycombs
Author:
Affiliation:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
    Abstract:

    Based on the potential advantages of unique mechanical performance and the micro-structure better design ability for cellular materials,this paper proposes a multi-segment energy absorption composite model filled with triangular and hexagonal honeycomb. Then, the dynamic response characteristic and the specific energy absorption of this model are numerically investigated by using explicit dynamic finite element (EDFE) method. The effects of honeycomb structure arrangement and relative density on the deformation mode, dynamic plateau stress, crushing load uniformity, and energy absorption capacity of the composite honeycombs are discussed in detail under different constant impact velocities. Research results show that the multi-segment filled honeycombs can realize the complementary advantages of type I and type II structures, which enables the axial force and bending deformation to participate in the overall deformation. Through the proper choice of cell micro-structures in each segment and the segment length, the crushing load efficiency of composite honeycomb is obviously improved and the fluctuation range of impact stress is significantly reduced. Composite honeycomb can effectively improve and control its energy absorption efficiency. These results are useful for the crashworthiness design and energy absorption controllable properties of cellular materials.

    Reference
    Related
    Cited by
Article Metrics
  • PDF:
  • HTML:
  • Abstract:
  • Cited by:
Get Citation
History
  • Received:
  • Revised:
  • Adopted:
  • Online: April 23,2020
  • Published: