+Advanced Search

Prediction of Friction Pressure for Non-Newtonian Backfilling Pipe-flow Slurry
Author:
Affiliation:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
    Abstract:

    In mine backfilling, it is of great significance to calculate the slurry pressure loss in the pipeline transportation. In order to seek a simple and efficient method to predict the pressure loss through applying the friction factor correlations, this paper summarized seven friction factor correction models for non-Newtonian flow according to the flow state classication. After that, details on how to utilize the models to predict the pressure loss through a case study were presented. The results show that choosing a proper model is very important, where the practical flow type and conditions should be considered. For Bingham plastic laminar flow, the Darby-Melson and Swamee-Aggarwal model, which are approximations of the Buckingham-Reiner equation, are the first choices since their prediction results are in good agreement with the actual monitoring results of the pressure loss. However, the Danish-Kumar model underestimates the pressure drop and is suitable for flow with a large Hedstrom Number. Besides, monitoring fluctuations for the velocity and pressure loss in practice can be observed due to the slightly changeable slurry mixing proportion, the variability of the aggregate, the particle settling and mild segregation of the slurry during transportation, and the change of the stowing gradient. Finally, the pressure loss prediction for the transition flow region is still an engineering challenge.

    Reference
    Related
    Cited by
Article Metrics
  • PDF:
  • HTML:
  • Abstract:
  • Cited by:
Get Citation
History
  • Received:
  • Revised:
  • Adopted:
  • Online: June 18,2020
  • Published: