+Advanced Search

Research on Seismic Performance of Prefabricated Bridge Piers with External Energy-dissipation Plates
Author:
Affiliation:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
    Abstract:

    To expand the application of prefabricated segmental bridge piers in middle and high intensity seismic region, energy dissipating steel plates are set at the outer side of the pier bottom. The performance of the prefabricated bridge piers with external energy-dissipation plates under quasi-static loading was analyzed and compared with that of the cast-in-place piers as well as the prefabricated piers with built-in energy dissipating steel bars. The rationality of the proposed prefabricated piers is studied from the aspects of hysteretic curve, skeleton curve, cumulative energy consumption and recoverability. Based on the three line skeleton curve model, a calculation method for the skeleton curve of prefabricated pier with external energy dissipating steel plates is proposed. The predictions from the proposed method are compared with the numerical simulation results, and both are in good agreement. The seismic performance of the prefabricated piers with externally placed energy consuming steel plates is analyzed by Pushover Method. The results show that increasing the prestressing level can increase the bearing capacity and stiffness, while reduce the ductility. When the prestressed steel strand is arranged around, the bearing capacity, stiffness and energy dissipation capacity of the pier are improved. When the steel strand is arranged in the center, the ductility of the pier is improved and the deformation capacity is strong after yielding. Increasing the amount of energy dissipation steel plate can improve the bearing capacity and stiffness of piers. To a certain extent, increasing the amount of energy dissipation steel plates can compensate for the adverse effect of the increase of slotting rate on the structure.

    Reference
    Related
    Cited by
Article Metrics
  • PDF:
  • HTML:
  • Abstract:
  • Cited by:
Get Citation
History
  • Received:
  • Revised:
  • Adopted:
  • Online: October 14,2020
  • Published: