+Advanced Search

Integrated Vehicle Chassis Control Based on Fast Terminal Sliding Mode
Author:
Affiliation:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
    Abstract:

    This paper presents an integrated vehicle chassis robust controller with fewer calibration parameters and faster dynamic response for the integrated control problems of active front wheel steering subsystem and direct yaw moment control subsystem, based on the fast terminal sliding mode control theory. Firstly, a vehicle dynamic model with lateral and yaw degrees of freedom is established based on D 'Alembert principle, and it is used as an integrated vehicle chassis control model. Then, an active front wheel steering control law and a direct yaw moment control law are designed based on the fast terminal sliding mode control theory, respectively. A smooth switching rule is established based on smooth switching factor defined by the phase plane of the vehicle sideslip angle and its derivative to realize the smooth switching control between the active front wheel steering subsystem and the direct yaw moment control subsystem. Meanwhile, the smooth switching rule can confine the main working areas of the active front wheel steering subsystem and the direct yaw moment control subsystem to the linear and non-linear areas of the tires, respectively. Finally, the feasibility and effectiveness of the proposed integrated vehicle chassis robust controller are verified based on vehicle dynamics simulation software. The results show that the proposed controller can take into account both vehicle handling stability and ride comfort.

    Reference
    Related
    Cited by
Article Metrics
  • PDF:
  • HTML:
  • Abstract:
  • Cited by:
Get Citation
History
  • Received:
  • Revised:
  • Adopted:
  • Online: February 26,2021
  • Published: