+Advanced Search

Wind-induced Interference Effects between Two Rectangular High-rise Buildings
Author:
Affiliation:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
    Abstract:

    Based on high-frequency force balance wind tunnel tests,the reason for the interference effects on rectangular high-rise buildings in actual engineering was investigated. On this basis,the aerodynamic interference effects of two rectangular high-rise buildings in different spatial positions were studied. The results show that the interference amplification effect of the wind loads on principal rectangular buildings is mainly caused by another rectangular high-rise building located at the side and back of the principal building with orthogonal arrangement,and the interference effect of interfering rectangular building in the downstream region of principal building is significantly higher than that in the upstream region. By increasing the spacing ratio of the two rectangular high-rises along the side and rear of the principal building,the wind load interference effect tends to decrease overall,and the acceleration interference effect first increases and then decreases. Furthermore,the interference range and intensity of the interfering building moving on the side of the principal building are higher than that moving behind the disturbed building. The maximum interference factor (IF) of the downwind shape coefficient of principal building is 1.41. The interference effect also significantly increases the lateral average wind load of principal building. The lateral interference factor (IF) normalized by the along-wind shape coefficient of single building can be up to 1.08. After further considering the dynamic amplification effect,the IFs of the base moment of principal building at the along-wind and across-wind direction are 1.49 and 2.28,respectively,and the maximum acceleration IF of the building is 1.23.

    Reference
    Related
    Cited by
Article Metrics
  • PDF:
  • HTML:
  • Abstract:
  • Cited by:
Get Citation
History
  • Received:
  • Revised:
  • Adopted:
  • Online: March 23,2021
  • Published: