+Advanced Search

Performance Reliability Analysis of Meta-action Unit Based on Gamma Process and Hybrid Copula Function
Author:
Affiliation:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
    Abstract:

    Motivated by the difficulty of the electromechanical product (system) performance reliability analysis and modeling, an general analysis method is developed for meta action unit performance reliability based on hybrid copula. The characteristics of performance degradation process are analyzed to establish the relationship between the product performance degradation and the realized specific functions. Using the functional motion decomposition method of "Function-Motion-Action", the electromechanical products are decomposed into a series of meta action units via linking functions with their performance. The components performance reliability analysis model is constructed that we consider it obeys the nonlinear gamma random degradation process is used to describe the degradation process of key parts in the unit. Considering the coupling relation of meta action unit internal parts and structure, a performance reliability model of the meta action unit is constructed based on the hybrid copula function. In order to more accurately evaluate the performance reliability of meta-action unit, the optimal Copula Functions having is selected to develop the performance reliability model of meta-action unit. The unknown parameter estimation of hybrid copula function is realized by improved genetic algorithm, which adds penalty term to fitness function. Combining the hybrid copula mathematical expression and the concept of a series system, the performance reliability expression of meta action unit considering the coupling dependence is obtained. The feasibility and effectiveness of the method are verified by an example.

    Reference
    Related
    Cited by
Article Metrics
  • PDF:
  • HTML:
  • Abstract:
  • Cited by:
Get Citation
History
  • Received:
  • Revised:
  • Adopted:
  • Online: April 21,2021
  • Published: