+Advanced Search

Research on Anti-Rollover Control of Mixing Truck Considering Dynamic Mass Center of Mixing Drum
Author:
Affiliation:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
    Abstract:

    Under turning conditions,due to the combined action of the concrete flow in the mixer drum of the mixer truck and the turning centrifugal force,the mixer truck is easy to roll over. In response to this problem, the dynamic mass center of the mixer drum and the stability of the mixer truck rollover were studied. On the basis of using EDEM software to simulate the movement of concrete during transportation, a mathematical model of the position change of the center of mass is obtained through calculation and fitting, and the relationship between the position change of the center of mass and the centrifugal force and the supporting force of the mixing drum is applied to the multi-body dynamics simulation. The influence of the dynamic mass center position change on the rollover stability of the mixer is analyzed. Then, based on the differential braking theory, a self-tuning PID anti-rollover control algorithm optimized by improved particle swarm optimization is proposed. The research results show that when considering the influence of the dynamic center of mass, the mixer truck is more likely to roll over; the self-tuning PID algorithm iterative optimization times is reduced by 33.3%, and the optimal control parameters can be found more quickly. Finally, the effectiveness of the proposed anti-rollover control algorithm is verified through angle step conditions and Fishhook conditions. The results show that the self-tuning PID control method can more effectively prevent the rollover of the mixer truck and improve the stability of the mixer truck.

    Reference
    Related
    Cited by
Article Metrics
  • PDF:
  • HTML:
  • Abstract:
  • Cited by:
Get Citation
History
  • Received:
  • Revised:
  • Adopted:
  • Online: April 21,2021
  • Published: