+Advanced Search

An Evidence-theory-based Reliability Design Optimization Method Using Approximate Shifting Vector
Author:
Affiliation:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
    Abstract:

    To effectively deal with structural optimization problems with epistemic uncertainty,an evidence-theory-based reliability design optimization method using approximate moving vectors is proposed. It first converts the evidence variables into probability variables and constructs an equivalent probabilistic reliability-based design optimization model. Through solving this model using the sequential optimization and reliability assessment method,an approximate design point is obtained. Then,the evidence-theory-based reliability analysis is carried out for each constraint at the design point,based on which the approximate shifting vector and deterministic optimization model are established. A new design point is obtained by solving the deterministic optimization problem. Finally,the sequential iteration process composed of equivalent probabilistic reliability-based design optimization and evidence-theory-based reliability analysis is repeated until convergence,and the optimal design point is obtained. The proposed method can convert the nested evidence-theory-based design optimization problem into an iterative solution process,which can effectively reduce its computational cost. The effectiveness of the proposed method is verified by three examples.

    Reference
    Related
    Cited by
Article Metrics
  • PDF:
  • HTML:
  • Abstract:
  • Cited by:
Get Citation
History
  • Received:
  • Revised:
  • Adopted:
  • Online: September 06,2021
  • Published: